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(Abstract )

Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered
intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated effi-
cacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin
C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic
regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic
kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for
cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic
side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase Il studies are
lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer
treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies
using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms
involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future
implications of high-dose vitamin Cin cancer treatment is presented and recommendations for further research are

discussed.
Keywords: Ascorbic acid, Vitamin C, IVC, Cancer, Clinical trials, Proteomics, Transcriptomics, Metabolomics
N\
Background also a cofactor for newly characterised hydroxylases of

Vitamin C (VitC), also known as ascorbic acid or ascor-
bate, is an essential water-soluble vitamin that plays an
important role in human physiology. Most of its physi-
ological functions involve its ability to act as an anti-
oxidant or as a cofactor for a wide variety of enzymatic
reactions, thereby contributing to stabilisation of the ter-
tiary structure of collagen, norepinephrine synthesis and
iron absorption [1, 2]. Emerging data show that VitC is
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the family of Fe-containing 2-oxoglutarate-dependent
dioxygenases that regulate gene transcription and cell
signalling pathways [3, 4]. In addition, immune cells
accumulate high concentrations of VitC, underlining its
key function in various processes within the immune sys-
tem [5]. Importantly, while most vertebrate species can
synthesize ascorbic acid, humans cannot, and they are
therefore dependent on oral consumption of VitC.

The concept of utilizing VitC as a therapeutic agent
for cancer care was first introduced by double Nobel
Prize winning chemist Linus Pauling and physician Ewan
Cameron almost 50years ago [6-8]. Specifically, Paul-
ing and Cameron published a number of clinical reports
that indicated significantly prolonged survival rates of
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terminal cancer patients treated with pharmacological
doses of VitC (10g/ day by intravenous infusion for about
10days and orally thereafter) compared to matched his-
torical controls that did not receive VitC. The same
amounts of high-dose VitC administered orally only in
randomized double blind placebo control studies could
not confirm this favourable response in advanced human
cancer [9, 10]. Herein lies the essence of much contro-
versy concerning the implementation of VitC in cancer
treatment over the past decades. An important distinc-
tion must therefore be made between orally administered
VitC (OC), achieving maximum plasma concentrations
of no more than 220 pumol/L of blood, and pharmacologi-
cal or high-dose IVC, generating plasma concentrations
up into the millimolar range (> 15mmol/L) [11-13],
which is needed to kill cancer cells based on pre-clinical
studies.

In light of this, high-dose IVC has re-emerged as a
potent anti-cancer agent over the past two decades, with
several phase I and a few phase II clinical trials report-
ing high tolerability and safety with promising signs of
efficacy in the treatment of various cancer types, either
as monotherapy or as a combination therapy [14-16]. In
addition, there is strong clinical evidence for IVC’s abil-
ity to reduce chemotherapy-related side effects, such as
fatigue, and to improve quality of life also in the palliative
care setting [17-19].

The aim of this review is to create an up-to-date over-
view of the most important research conducted within
the field of high-dose VitC and cancer therapy. First, the
use of high-dose VitC mono- and combination therapy in
the pre-clinical and clinical setting is discussed, followed
by a discussion of the molecular mechanisms found to
be involved in the anti-cancer activity portrayed by VitC.
Specifically, the contribution of emerging global profil-
ing studies based on proteomics, transcriptomics and
metabolomics to these insights will be highlighted. In
this regard, our findings will provide an outlook on future
research, examining current gaps in our knowledge and
addressing the limitations of research in the clinical set-
ting and the need for more extensive clinical trials. Also,
future implications of high-dose VitC in cancer therapy
will be discussed in both treatment and palliative care.

High-dose VitC as a single agent

The pioneering clinical studies that initiated the interest
in VitC as anticancer agent [6—8] employed VitC as single
agent. Since then, a great number of clinical and pre-clin-
ical studies have explored high-dose VitC. In this section,
we briefly summarize the pre-clinical and clinical studies
of VitC as monotherapy before elaborating more on the
combination therapy studies.
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Pre-clinical VitC monotherapy studies

A vast number of studies have shown encouraging
anti-cancer activity of VitC at millimolar concentra-
tions (~1-20mM) in pre-clinical models of various
cancer types [15]. The most investigated have been
leukaemia [20-24], colon cancer [25-32], melanoma
[33-37], pancreatic cancer [14, 31, 38] and prostate
cancer [39-41]. Similar results have been described for
the treatment of non-small-cell lung cancer (NSCLC)
[16], breast cancer [31, 42], ovarian cancer [31, 43, 44],
hepatocellular carcinoma [45, 46], malignant mesothe-
lioma [47, 48], thyroid cancer [49, 50], oral squamous
cell carcinoma [51], neuroblastoma [52] and glioma,
including the difficult-to-treat glioblastoma multiform
(GBM) [16, 53, 54].

One notable example of the progress in VitC pre-
clinical research is the recent work in hard-to-treat
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)
driven tumours, such as KRAS mutant colorectal
cancer (CRC) [25, 27, 32]. Based on prior studies by
Yun et al. [32] and Aguilera et al. [25], Cenigaonan-
dia-Campillo et al. [27] used elevated doses of VitC
(5-10mM) in KRAS mutant CRC tumours, both
in vitro and in vivo. They showed that VitC was able
to target common metabolic aberrancies by decreasing
adenosine triphosphate (ATP) and glucose transporter
1 (GLUT-1) levels, as well as by dissipating the mito-
chondrial membrane potential, which could sensitize
KRAS mutant CRC cells to current treatments such
as chemotherapy. Given the importance of develop-
ing better treatments for patients with KRAS driven
tumours, non-toxic combinations with VitC are also
being explored and will be discussed in the following
section 2.

In the majority of cancer types, most of the in vivo
studies have shown inhibition of tumour growth
(40-60%) by using elevated doses of ascorbate (1-4g/
kg) either intravenously (IV) or intraperitoneally (IP)
[15, 55-57]. Importantly, in order to maintain VitC
levels inside the tumour, daily administration is the
most optimal schedule [56]. By using these doses
and frequency, VitC also successfully reduced and/or
impaired metastasis formation (50-90%) [33, 39, 43,
58-61].

In terms of safety and tolerability, several studies have
shown that high-dose VitC does not increase toxicity
levels in vivo yet protects from other treatment side-
effects when used as an adjuvant agent [15, 62—-64].

Overall, the studies performed in vitro and in vivo
using high-dose VitC as single agent in a large num-
ber of cancer types, have shown that it is a promising
anti-cancer agent impairing both tumor growth and
metastasis.
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Clinical VitC monotherapy studies

Clinical monotherapy studies administering high-dose
VitC in patients with various types of advanced malig-
nancies report this therapy to be safe, showing no sig-
nificant toxicity at doses of up to 3 g/kg [13] (Table 2).
These studies additionally demonstrated that at the
given doses, ascorbate plasma levels of over 10mM
could be sustained for several hours, and observed
maximum achievable blood concentrations of up to
49mM [13]. Grade 3 or higher adverse events possi-
bly related to IVC treatment were reported in only 1-2
cases per study (with 17-24 patients included per study,
see Table 2), the most common being hypokalemia [13,
65], hypernatremia [13], hypertension and anemia [66].
Riordan et al. [65] additionally reported one case of
kidney stones in a metastatic CRC patient with a his-
tory of renal calculi, suggesting IVC may be contrain-
dicated for patients with renal dysfunction. Nielsen
et al. [66] reported one case of pulmonary embolism
and pneumonia each, both of which can also be attrib-
uted to the underlying disease, since cancer is known to
increase the risk of thromboembolic events. Hoffer at al
[12]. reported no grade 3 or higher toxicities.

Beyond being safe and well-tolerated, objective anti-
tumor response was not observed in any of these IVC
monotherapy studies. While Stephenson et al. [13], Hof-
fer et al. [12] and Riordan et al. [65] reported 3 (out of
16), 2 (out of 24) and 1 (out of 24), and patients with sta-
ble disease, respectively, the study by Nielsen et al. [66]
reported no signs of disease remission or stabilization.
Latter result is likely related to the fact that both dose
and administration frequency (maximum of 60g whole
body dose given 1 time per week for 12 weeks) was con-
siderably lower compared to the other studies (here, up
to 3 g/kg were administered at least 3 times per week, for
up to 8weeks, see Table 2). That being said, a number of
promising case reports have reported unexpectedly long
survival time and in some cases even complete tumour
regression of advanced or metastatic disease [67-72]. In
future studies, molecular profiling of these exceptional
responders would be of high value to explore molecular
features that make certain tumors more sensitive to IVC.

Currently, one phase II study is ongoing whereby the
effect of high-dose (1.25g/kg) VitC monotherapy is
being studied in resectable or metastatic colorectal, pan-
creatic and lung tumors (Table 3). The objective of the
study is to investigate the effect on pathological tumor
response in resectable tumors and to observe objective
tumor response in KRAS or BRAF mutant metastatic
tumors (NCT03146962) [73]. In addition, one medium-
dose effort in bladder cancer (NCT04046094) [74] as
well as several oral and/or low-dose monotherapy stud-
ies in non-solid tumors (NCT03682029)(NCT03613727)
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(NCT03964688) [75-77] are currently ongoing in line
with the promising pre-clinical data concerning these lat-
ter cancer types [21, 78].

In general, high-dose VitC monotherapy has not been
clinically assessed in patients that have not received
(heavy) prior systemic treatment and that are not termi-
nally ill. This fact may explain the limited response effects
observed. Finding a feasible clinical setting to include less
heavily pre-treated patients however is complicated, as it
would involve denying patients standard of care. For this
reason, future applications of high-dose VitC as cancer
therapy may rather be in combination strategies and we
will focus more on this application in the sections below.
However, important lessons regarding administration
frequency can be learned from these monotherapy stud-
ies, whereby only those studies that administered IVC
at least 3 times per week warranted further clinical tri-
als. The recommended doses ranged from 1.5g/kg [12] to
1.9-2.2g/kg [13].

VitC monotherapy in palliative care and quality of life

In palliative care, high-dose VitC is currently gaining
ground due to its highly safe and tolerable profile. Not
only is high-dose VitC known to relieve pain in cancer
patients [79], vast clinical evidence suggests that it has
a significant positive impact on patients’ well-being [14,
17-19, 63, 80-83]. This might be due to the frequent
hypovitaminosis and VitC deficiency in cancer patients
[79, 84, 85], which are commonly enhanced by anti-neo-
plastic treatments [18].

For instance, a retrospective, multicentre, epidemiolog-
ical cohort study [18] showed amelioration of appetite,
fatigue, depression and sleep disorders in breast cancer
and terminal cancer patients suffering from a wide vari-
ety of cancer types that received complementary 7.5g
IVC while being treated by respective standard regimens.
More recently, a single-center, parallel-group, single-
blind interventional study also in breast cancer patients
[86] showed a similar and significant reduction of symp-
toms such as nausea, fatigue, tumor pain and loss of
appetite by administering 25g of IVC per week in addi-
tion to their current standard treatment. Favourably, no
new side effects were reported after initiation of IVC
treatment.

Moreover, another retrospective study showed that
patients with radiotherapy-resistant bone metastasis did
not only have less pain and better performance measures
when given high-dose VitC, they had a median survival
time of 10 months as compared to the 2 months median
survival time within the control group [80].

Overall, high dose VitC administered as a single agent
has not only been shown to be safe and well-tolerated
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in cancer patients, but also to ameliorate pain and to
improve quality of life in the palliative care setting.

High-dose VitC in combination treatments

Many studies in the past years have investigated high
dose VitC as an adjuvant pro-oxidative agent mainly in
chemo- and radiotherapy. In addition, other combination
treatments have been investigated as well. In this section,
we review the pre-clinical and clinical literature of high
dose VitC in combination treatments.

For pre-clinical studies, we provide detailed informa-
tion per study and per combination (i.e. cancer type,
VitC doses, route of administration, sample size, etc),
and describe the observed effects such as synergism,
enhanced efficacy and/or reduced toxicity (Table 1,
Figs. 1, 2). Particularly for clinical studies, completed and
on-going trials using IVC as monotherapy and combina-
tion treatment are described in detail (Tables 2, 3, Fig. 3).
We examine relevant information on phase of study, type
of interventions, IVC dose, injection scheme and num-
ber of patients enrolled. In addition, results of completed
studies and primary outcomes of ongoing trials are thor-
oughly discussed.

Pre-clinical combination studies

A comprehensive overview of all 71 retrieved studies
from 1989 to 2021 (Fig. 1), investigating 59 combinations,
is shown in Fig. 2, while the 44 studies of the last 5years
are summarized in more detail in Table 1. A division can
be made between the highly studied combination with
chemotherapy and radiotherapy, the lesser studied with
targeted therapies, combinations with immune therapy,
which has only more recently gained awareness, and with
non-conventional anti-cancer agents (Fig. 2B).

Pre-clinical studies using VitC in combination

with chemotherapy and radiation therapy

In pre-clinical models, high-dose VitC is reported to
enhance the effectivity of a wide variety of chemothera-
peutics such as carboplatin [63, 89], cisplatin [51, 89,
100103, 179, 180], chlorambucil [181], 5-FU [88, 89,
182], gemcitabine [14, 110, 183, 184] and temozolomide
[16, 54] in various cancer cell types, often in a synergistic
manner or by enhancing treatment efficacy (Table 1 and
Fig. 2).

For example, a recent in vivo study in oral squamous
carcinoma described an enhanced therapeutic effect of
cisplatin in combination with high-dose VitC (4g/kg IP
twice daily) [51]. A study in pancreatic cancer showed
that gemcitabine given in combination with high-dose
VitC (4g/kg IP twice daily) achieved significant tumor
growth inhibition in mice bearing pancreatic xenografts
compared to control and gemcitabine-only groups [14].
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Similarly promising, high-dose VitC has also been
found to act as a radio-sensitizer during radiation or
chemo-radiation of pre-clinical cancer models, with high
specificity for cancer cells over healthy cells [16, 87, 89,
110, 111, 185-190].

A notable example is the study of Schoenfeld et al. [16],
which investigated combinations of standard cisplatin
chemotherapy with VitC in NSCLC and standard temo-
zolomide and radiation in GBM. To this end, they studied
cell line models, performed in vivo studies and a phase I/
IT clinical trial. Mice injected with high-dose VitC (4 g/kg
IP daily) in combination with radio-chemotherapy (5 mg/
kg carboplatin weekly, 12 Gy IR/2 fractions (fx)) signifi-
cantly increased overall survival (~50% increase), sen-
sitizing these hard-to-treat NSCLC and GMB tumours
to current treatment regimens. Similar results in gastric
cancer were described by O’Leary et al., whereby high-
dose VitC (4g/kg IP daily) was injected in combination
with carboplatin (15mg/kg weekly), paclitaxel (10mg/
kg) and 2Gy IR/8fx [89]. An important consideration
for pre-clinical combination studies is the clinical stand-
ard of care onto which VitC is added, as exemplified by
a study in GBM [191] that demonstrated faster tumor
progression in tumor-bearing mice treated with a single
dose of radiation and daily high-dose ascorbate than in
those treated with radiation alone. Here, the authors use
a single 4.5 Gy irradiation dose, which does not relate to
standard treatment of care in GBM patients who receive
daily fractions up to a total of 60Gy. In addition, the
relatively seen lower ascorbate dose of 1 or 2g/kg com-
pared to the 4 g/kg applied in the GBM study by Schoen-
feld et al. [16], possibly promoted VitCs radio-protective
rather than radio-sensitizing properties.

Finally, in addition to its enhancing effects in conven-
tional cytotoxic therapies, numerous animal studies have
shown decreased off-target toxicity of (chemo-) thera-
peutic agents following administration of OC and IVC
[192]. In this review, Carr and Cook reported that VitC
administration typically decreases white blood cell loss,
weight loss, ascites accumulation, hepatotoxicity, reticu-
locytosis, lipid oxidation and cardiomyopathy induced by
the chemotherapeutic agents.

Pre-clinical studies using VitC in combination with targeted
therapy

A great number of pre-clinical studies have examined the
use of high-dose VitC combined with targeted therapies
such as kinase inhibitors (i.e. sorafenib, gefitinib, vemu-
rafenib) [109, 116, 123], mitochondrial inhibitors (i.e.
doxycycline, venetoclax, oligomycin A, metformin) [104,
106, 107], poly ADP ribose polymerase (PARP) inhibitors
[193] and glycolysis inhibitors [194].
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Fig. 1 Study overview of pre-clinical, clinical and omics studies using high-dose VitC as anti-cancer agent. Estimated bar graphs of most
represented cancer types VitC doses are shown in orange and include high dose (> 1 mM in vitro or 1g/kg in vivo and clinical), medium dose

(< 0.5mM in vitro), and low dose (< 0.1 mM in vitro,< 1 g/kg in vivo, < 10g whole body dose clinical). Less represented tumour types are further
described inTables 1, 2, 3 and 4, where oral doses are also included if applicable. Described effect in pre-clinical studies is expressed by percentage
of the total number of studies. Reported results in completed clinical trials are expressed by number of studies. Number of studies per global
molecular profiling type are also indicated. Omic results include n =20 in vitro and n =4 in vivo studies

| l

24 Omic studies

Transcriptomics [N 9
Metabolomics 4

~1-2 cell lines/study

Overall, most of the retrieved pre-clinical stud-
ies reported synergistic effects in vitro and/or in vivo
(Fig. 2A), warranting clinical studies. For instance, an
in vitro study showed synergistic anti-cancer action
of high-dose VitC in combination with sorafenib, a
multi-kinase (eg. Raf-1, B-Raf, VEGFR-1-3 and FLT3)
inhibitor, in hepatocellular carcinoma (HCC) cells,
and additionally reported a case of prolonged regres-
sion of a HCC patient upon combination treatment
with IV high-dose VitC and sorafenib [116]. Other
studies have reported similar synergistic effects for
high-dose VitC combined with EGFR inhibitors cetux-
imab and gefitinib in KRAS mutated colon cancer and
NSCLC cells respectively [99, 109]. Interestingly, Jung
et al. [99] showed that medium-dose VitC (0.5gkg™ D)
could abrogate cetuximab resistance in vivo and sug-
gested sodium-dependent vitamin C transporter
SVCT2 as a potental marker for enhancing efficacy
of the combination treatment of VitC and cetuximab

in KRAS-mutant CRC patients. Similarly, resistance
to BRAFV600 inhibitor vemurafenib was also abro-
gated by VitC in melanoma in vivo [123]. Recent find-
ings reinforce the promising synergistic effects of VitC
with kinase inhibitors such as BRAFV600 inhibitor
PLX4032 in thyroid cancer in vivo [64] and with BTK
inhibitor ibrutinib and PI3K inhibitor idelalisib in
chronic lymphocytic leukemia (CLL) patient-derived
cells [104].

Likewise, emerging anti-cancer compounds target-
ing telomerases, mitochondrial activity or glycolysis
also synergize with high-dose VitC. For instance, tel-
omerase inhibitor triethylenetetramine (TETA) in the
treatment of breast cancer [122], glycolysis inhibitor
3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO)
in NSCLC cells [194], respiratory chain complex I inhib-
itor metformin, ATP synthase inhibitor oligomycin A
and Bcl-2 inhibitor venetoclax in CLL patient-derived
cells [104].
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Furthermore, enhanced treatment efficacy was con-
firmed for high-dose VitC in combination with several
hormonal treatments such as oestrogen receptor ER and
human epidermal growth factor receptor 2 (HER2) inhibi-
tors in breast cancer cells [108], as well as for PARP inhibi-
tion in the treatment of AML-TET?2 deficient cells [22] and
JQ1 (thieno-triazolo-1,4-diazepine), a Bromodomain and
extraterminal inhibitor, in the treatment of melanoma [36].

geted agents [106, 107, 121].

therapies.

Finally, three recent in vitro studies indicate that
high-dose VitC might be of use in eradicating cancer
stem cells (CSC) by synergistically targeting mitochon-
dria and causing cell death combined with several tar-

All data combined strongly emphasizes the poten-
tial of high-dose VitC as adjuvant therapy for targeted
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Fig. 3 Cancer types investigated in 34 published and 23 ongoing (status February 2021) VitC clinical trials. Annotated are VitC dose group (A and C;
high dose >1g/kg, low dose <10g whole body dose) and treatment type (B and D). See Table 2 (medium-to-high-dose published trials; 16/34 of
total published trials) and Table 3 (medium-to-high dose ongoing trials; 16/23 of total ongoing trials) for details

Pre-clinical studies using VitC in combination

with immunotherapy and anti-inflammatory compounds
Little research has been conducted on high-dose VitC in
combination with immunotherapy. Two very recent stud-
ies show that high-dose VitC synergizes with immune
checkpoint inhibitors (ICI) anti-PD-1 and anti-CTL-4 in
mouse models, as well as increases the immunogenicity
of effector T cells [90, 91]. For instance, Luchtel et al. [90]
pre-treated lymphoma cells co-cultured with CD8+ T
cells derived from healthy donors with 1 mM VitC. Inter-
estingly, they described a significant 15-21% increase in
immunogenicity compared to non-VitC treated cells.

In combination with ICI, high-dose VitC affected
tumour growth in a T cell-dependent manner, by
attracting effector T-cells and not T regulatory cells.
Importantly, in a few mice, complete regressions were
observed and mice also acquired immunity after re-
injection of tumour cells [91]. Of note, mismatch repair
deficient tumours, usually resistant to ICI, showed a

very effective response when combined with high-dose
VitC. In addition, upon high-dose VitC administration,
not only CD8+ T cells, but also macrophages showed
increased tumour infiltration, and both enhanced Gran-
zyme B production by cytotoxic T cells and enhanced
interleukin 12 production by antigen-presenting cells
were observed. These studies are particularly encourag-
ing given the great potential of immunotherapy in anti-
cancer treatment, and suggest that high-dose VitC may
be a promising combination strategy to convert “cold”
tumours into “hot” tumours, further widening the ther-
apeutic scope of immunotherapy.

Furthermore, high-dose VitC strongly enhanced anti-
cancer effects of immunosuppressor auranofin in the
treatment of triple-negative breast cancer in vitro and
in vivo [97]. Similarly, anti-inflammatory compounds such
as sulindac [118], sulfasalazine [117] and methotrexate
[195] showed strong synergy and enhanced efficacy in the
treatment of colon, prostate and liver cancer, respectively.
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Pre-clinical studies using VitC in combination with emerging
non-pharmaceutical therapies

High-dose VitC has also been combined with other less
conventional regimens. One study reports the synergistic
effect of fasting-mimicking diet and oxaliplatin in combi-
nation with high-dose VitC against KRAS mutated can-
cers both in vitro and in vivo [114].

In addition, several studies reported synergism of anti-
cancer effects of vitamin K3, also known as menadione,
combined with VitC in vitro [21, 196-199]. Moreover,
one in vivo study found that the combination of these
vitamins reduced tumor growth and tumor metastasis in
Lewis lung carcinoma [59]. In addition, this vitamin com-
bination was also reported to be synergistic with mTOR
inhibitor everolimus and aurora B kinase inhibitor bara-
sertib [124] and sensitized human urothelial tumors to
gemcitabine [200] and various solid tumors to radiother-
apy in vivo [201], mainly causing cell death upon oxida-
tive stress [202].

Technical considerations and need for standardization

To deduce best practices, we further evaluated dosing
schedules, duration of treatment and solvents used in the
pre-clinical studies (Table 1, Fig. 2B-E).

First, the type of solvent used for preparing VitC solu-
tions significantly varies, water being the preferred one,
followed by phosphate-buffered saline (PBS), culture
media -for in vitro studies- and saline -for in vivo studies-
(Fig. 2E). Notably, almost 45% of studies did not report
the type of solvent used in their methods section. Like-
wise, most of the studies did not indicate the use of seal
to prevent oxygen and light interaction, nor pH range
used. In light of VitC chemistry and stability, these are
important considerations that should be standardized to
get reproducible and robust results [16, 203, 204].

Since VitC effect is dose-dependent, we examined the
effect among different dose groups, >1mM vs. <1mM
in vitro and>1g/kg vs. <1g/kg in vivo (Fig. 2C). For
in vitro studies, a synergistic effect was reported in 80%
of all cases and 20% showed enhanced efficacy. Given
that 2D and 3D cell culture cannot fully reproduce physi-
ological conditions, in vivo studies provide added value
for clinical studies. For in vivo IP injections, synergism
was reported two times more often in the studies that
used a higher dose >1g/kg, as compared to lower dose
<1g/kg. Importantly, for the dose group >1g/kg VitC,
superior VitC effect [37] as well as reduced toxicity were
described [57, 63, 110, 181]. For the dose group <1g/kg,
several examples that show no added benefit on top of
chemotherapeutic agents or even an antagonistic effect
were reported [88, 123, 205], highlighting the importance
of choosing proper VitC pharmacological doses in vivo,
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preferably >1 g/kg IP, thus reaching sufficient plasma lev-
els to display its anticancer properties [55].

Treatment duration in vitro and frequency in vivo was
examined in a similar manner (Fig. 2D). In in vitro stud-
ies, cell lines were exposed for long (24-96h) or short
(1-2h) periods in 74 and 26% of the cases, respectively,
generally depending on the type of assay and combina-
tion treatment. Although synergism was mostly reported
in both cases, short exposures (1-2h) with a media
refresh step are usually preferred to better mimic the
physiological conditions in patients [16, 38, 203]. For
instance, VitC’s capacity of pH-dependent auto-oxidation
and the presence of catalytic metals, such as iron and
copper, usually common in cell culture media, can simul-
taneously increase H,O, production and impair repro-
ducibility in vitro [206—208]. In order to further improve
reproducibility, a dosing per cell scheme has been shown
to correct for H,O, toxicity and accumulation in the
media [16, 209] (own observations, unpublished data).
In conclusion, and in line with its 2 h half-life in patients,
in vitro studies should be carried out thoroughly consid-
ering ascorbic acid chemistry with recommended experi-
mental conditions such as avoiding catalytic metals in
culture media, using a dosing per cell metric scheme and
a 2h treatment with a media refresh step [13, 126, 156].

In vivo, frequency of high dose VitC was reported as
daily in the majority of studies (n =21), as well as twice
daily (n =6) and twice per week (1 =1). All frequency
schedules induced enhanced co-treatment efficacy and
synergism in a similar manner. Furthermore, in many
studies it was unclear whether combination treatments
were co-administered or added in a particular sequence.
Altogether, what was clear is that successful in vivo stud-
ies used >1g/kg IP VitC mostly on a daily basis with a
treatment duration ranging from 2 to 8.5weeks and a
median of 3.5 weeks.

It is noteworthy that most of the in vivo studies use
ascorbate-synthesizing models, whose human-mimick-
ing features may be questioned. Contrary to humans,
mice can synthesize their own VitC, possibly making
them suboptimal models for the evaluation of VitC’s
anti-cancer effect [55, 210]. As an alternative model,
VitC-deficient mice (i.e. Gulo—/— mice) have recently
been used to study VitC in cancer as reviewed by Camp-
bell and Dachs [55]. Nevertheless, the different routes of
administration and dose ranges from different studies
make these two models difficult to compare. Some data
suggests that the uM-range VitC basal concentrations in
plasma of ascorbate-synthesizing mice (<100uM), simi-
lar to plasma VitC levels in (healthy) humans with nor-
mal dietary VitC uptake, may have only minimal effects
on high-dose (mM-range) VitC tumour killing [211-213].
However, considering the low to scurvy-like levels (often
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<10uM) of plasma VitC in many cancer patients 213—
215], the use of VitC-deficient mice may be preferred to
allow researchers to better fine-tune physiological cancer
conditions [56, 213, 216]. An additional remark is that
tumour ascorbate levels, instead of plasma levels, might
be more relevant to monitor treatment outcome. Direct
evidence addressing these issues may help to better eval-
uate VitC anti-cancer properties and pave the way for
promising and robust clinical trials.

Clinical studies on IVC in combination treatments
Encouraged by the promising results of the pioneering
clinical & pre-clinical studies, several phase I and some
phase II clinical trials have analysed the use of phar-
macologically dosed VitC in combination therapy with
conventional cancer treatment agents. A Pubmed data-
base search was performed using search terms “ascor-
bate OR vitamin C AND cancer AND clinical trial’. In
total, 34 completed studies were identified (Fig. 3), 16 of
which studied medium-to-high dose IVC (Table 2), and
4 focused on IVC monotherapy specifically, as was dis-
cussed in earlier sections of this review. In general, these
clinical combination studies have focused on a limited
number of cancer types, those including high-dose VitC
mainly concerning pancreatic cancer, and lower phar-
macological doses mainly concerning non-solid tumors
(Fig. 3A). An additional search of the clinicaltrials.gov
database using search terms vitamin C or ascorbic acid,
and cancer, did not reveal any additional trials that were
completed with reported results. Many studies were ter-
minated due to a change in standard of care or, more
often, because of poor accrual. The large majority of pub-
lished studies were carried out with only a limited num-
ber of patients, and to date, no large-scale, double blind
randomized trials that are imperative in determining the
clinical efficacy of IVC have been completed. Having said
that, 23 clinical trials, including one phase III study, are
currently underway, recruiting patients of several cancer
types to investigate the effects of adding IVC in a vari-
ety of cancer treatment settings. Sixteen of these ongoing
studies use medium-to-high dose IVC, and are reported
in Table 3.

Most of the clinical studies presented in this section
dose-escalated VitC to achieve >20mM plasma ascor-
bate concentrations. In general, this was achieved when
administering 75 g infusions at least 3 times weekly, and
was not significantly further increased at 100g or more
[14, 16, 110]. For those studies administering per kg of
body weight, amounts >1.0g VitC/kg [151] were needed
to achieve plasma levels of at least 20mM. We focus
in detail only on those studies administering >1.0g/
kg or>75g (high dose) and>10g whole body dose
(medium dose).
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Clinical studies combining chemotherapy and radiation
therapy

The most studied combination treatment using high-
dose IVC is together with chemo- and/or radiotherapy
(RT) regimens. Eight such studies were identified, of
which half were in conducted in the pancreatic cancer
setting (Table 2). As with VitC monotherapy, all studies
reported favourable toxicity profiles, with 2 randomized
trials specifically observing substantially decreased tox-
icities compared to control arms without IVC [63, 148],
although results of latter study are reported as abstract
only without showing data. Both studies administered
75-100g IVC, Ma et al. [63] 2 times a week for 12 months
(of which the first 6 months in conjunction with chemo-
therapy) and Bruckner et al. [148] 1-2 times per week
(with GFLIP every 2weeks until progression). Com-
pared with RT + temozolomide (TMZ) therapy in a single
group study in glioblastoma, the addition of IVC possibly
provided a protective effect on hematologic toxicities as
judged eg. by incidences of thrombocytopenia reported
for similar treatment regimens without IVC in other
studies [129]. Importantly, Polireddy et al. [14] found no
clinically significant influence on gemcitabine pharma-
cokinetics, suggesting combination treatment is not det-
rimental to the mechanism of action of standard of care
chemotherapies.

Consistent with positive data obtained from animal
and other pre-clinical studies, several of these phase I/
II studies reported trends towards increased disease
control and objective response rates, although all were
underpowered for detection of efficacy. In the rand-
omized trial of Ma et al. [63] in ovarian cancer [63], the
median time for disease progression was 8.75months
longer with ascorbate addition to standard chemother-
apy (carboplatin and paclitaxel) than in chemotherapy
alone. Single group studies showed favourable OS and
PFS compared to historical controls [82, 111, 129] and
institutional averages [110].

Encouragingly, 2 randomized phase 2 trials are cur-
rently ongoing in pancreatic (NCT02905578) [137] and
prostate (NCT02516670) [140] cancer patients, directly
comparing the added benefit of high-dose IVC to stand-
ard chemotherapy. Additionally, 7 single group phase
1 and/or 2 trials studying the combination of high-dose
IVC with chemo- and/or chemoradiotherapy are cur-
rently underway, among others in lung (NCT02420314
and NCT02905591) [133, 134] and pancreatic
(NCT03410030) [139] cancer patients.

Clinical studies using VitC in combination with targeted
therapy

Three non-randomized clinical studies administered
targeted agents on top of chemotherapy and high-dose
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IVC [151, 153, 155]. Indications of some efficacy were
observed in metastatic stage IV pancreatic cancer
patients receiving gemcitabine and erlotinib together
with IVC [153], with 8/9 patients showing tumour
shrinkage after only 8weeks of treatment. A simi-
lar study by Welsh et al. [82], whereby IVC was com-
bined with gemcitabine only, reported similar positive
effects, with 6/9 evaluable patients maintaining or
improving their performance status. Median overall
survival in both studies was 182days and 13 months,
respectively.

Wang et al. [151] combined IVC at 1.5 g/kg once daily
for three consecutive days with mFOLFOX6 or FOL-
FIRI with or without bevacizumab in a 14daycycle in
advanced colorectal and gastric cancer patients (treat-
ment was continued for 12cycles, disease progression,
unmanageable toxic effects, or withdrawal of consent).
Besides a favourable safety profile, potential clinical effi-
cacy was observed. Specifically, 14/24 evaluated patients
showed PR (objective response rate, ORR, 58.3%) and
9/24 SD (ORR 37.5%), giving a disease control rate of
95.8%. A promising observation was the comparable effi-
cacy in patients with wild-type and with mutant RAS/
BRAF tumors. Encouraged by these positive results, this
study has since been extended to a randomized phase 3
trial, with an estimated enrolment of 400 mCRC patients
(NCT04516681, see Table 3) [131]. To date, this is the
only phase 3 trial studying high-dose IVC in anti-cancer
treatment.

Ten grade 3 or higher adverse events were reported in
the 14 pancreatic cancer patients enrolled in the Monti
et al. [153] study, all of which are frequently observed in
pancreatic cancer disease progression and/or gemcit-
abine and erlotinib treatment and thus not likely to be
linked to concomitant IVC application. Among the 36
patients enrolled in the Wang et al. study [151], 8 grade
3 or higher adverse events were registered, among which
the most common was neutropenia (5 cases), again most
likely attributable to the chemotherapy scheme. Likewise,
none of the adverse reactions registered in the Kawada
et al. [155] study (neutropenia, anemia, and thrombo-
cytopenia) were likely to be directly attributable to IVC
treatment.

While all these completed trials studied combinations
of chemo- and targeted therapies only, 3 ongoing trials
are now investigating the addition of IVC to targeted
agents only (eg. in lung cancer patients in randomized
trial NCT03799094) [144].

Clinical studies using VitC in combination with emerging
non-pharmaceutical therapies

Finally, one randomized phase II trial compared
a combination of high-dose IVC plus modulated
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electrohyperthermia (mEHT) with best supportive care
(BSC) to BSC alone in advanced stage NSCLC patients.
Not only quality of life but also PFS and OS were signifi-
cantly prolonged in the IVC/mEHT arm (PFS: 3 months
vs 1.85 months; OS: 9.4 months vs 5.6 months) [157], sug-
gesting this treatment combination may be a non-toxic
way of improving the prognosis of patients with advanced
NSCLC. Except for one case of grade 3 diarrhea in the
active arm (49 patients), the overall adverse effects of IVC
and mEHT were marginal.

Anti-cancer mechanisms

The most widely described mechanism by which VitC
is cytotoxic to cancer cells in a selective manner is its
pro-oxidant facet, which targets redox imbalance. More
recent studies have reported additional mechanisms such
as epigenome regulation, oxygen-sensing, immunomod-
ulatory functions, epithelial-to-mesenchymal transition
and kinase activity regulation [1, 2, 5, 60, 64, 99, 109, 217,
218] (Figs. 4 and 6). Pre-clinical studies studying VitC
in combination with other anti-cancer agents have also
contributed significantly to the insight into the potential
mechanisms of action (MoA) of VitC. By collecting the
described MoA from experimental studies dating from
2016 to 2021, we provide an overview of the various can-
cer modulatory effects that underline VitC as a multi-tar-
geting agent in relation to the treatment (Fig. 4). In total
we identified 14 described effects, of which 7 were recur-
rent (described more than six times). We also generated
an up-to-date comprehensive overview of the multi-fac-
eted targeting effects of VitC in the treatment of cancer
(Fig. 6).

Pro-oxidant activity

High concentrations of VitC act as a pro-oxidant, elicit-
ing hydrogen peroxide—dependent cytotoxicity in can-
cer cells without adversely affecting normal cells [15].
This mechanism is based on VitC redox capacity of met-
als, such as iron or copper, both generally abundant in
tumour cells and involved in important enzyme catalytic
activities [219-222]. For instance, reduction of iron from
Fe?* to Fe?t, known as Fenton reaction, allows the for-
mation of oxygen radicals such as hydrogen peroxide.

In brief, high dose VitC acts as a pro-oxidant in cancer
cells; however, in normal cells its anti-oxidant properties
are prevalent [2, 54, 63, 181, 223]. One of the causes of
cancer cells being more susceptible to high-dose VitC is
their increased level of labile iron (Fe?* iron amenable to
exchange between reactions), which reacts with H,O, to
form the damaging hydroxyl radical (OH’) [224]. Along
with increased iron levels, cancer cells generally have
a higher metabolic rate than healthy cells and an abun-
dance of defective mitochondria, leading to endogenously
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higher oxidative stress levels [16, 225-227]. Moreover,
cancer cells generally lack catalase activity, making them
extra vulnerable to oxidative stress [2, 228—230]. These
anti-cancer effects can be abolished by adding the main
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detoxifying enzyme catalase to the medium, underscor-
ing a role for H,0O, [231].

In addition, cancer cells exhibit increased expres-
sion of GLUTI1. This transporter can also mediate
uptake of oxidized VitC (dehydroascorbic acid, DHA)
which is reduced back after uptake by the cell, result-
ing in depletion of intracellular antioxidants such as
glutathione (GSH), nicotinamide adenine dinucleotide
phosphate (NAPDH) and SOD enzymes, thereby fur-
ther increasing reactive oxygen species (ROS) levels in
cancer cells [32]. Importantly, these anti-cancer effects
have been widely reported as synergistic when combin-
ing VitC with targeted therapies (Fig. 2).

Therefore, further increasing oxidative stress is an
important anti-cancer strategy which also underlines
the effectiveness of cytotoxic therapies such as chemo-
and radiation therapy.

Many studies have clearly shown that redox func-
tions of VitC are dose-dependent; acting mainly as an
anti-oxidant at normal plasma concentrations that
range from 30 to 80 uM, and acting as a pro-oxidant in
pharmacological concentrations 0.5-20 mM by increas-
ing ROS (i.e. H,O, and O,_) [1, 232]. High-dose VitC
thus leads to ROS formation and thereby targets redox
imbalance, which results in DNA, protein and lipid
damage of cancer cells [15, 30, 38]. In combination with
chemo/radiation therapies, ROS increase, DNA dam-
age, reduction of antioxidant barriers (eg.. SOD2, Nrf2,
NAPDH, GSH) and mitochondrial stress were the most
reported MoA (Figs. 4 and 6), which may explain the
notorious synergistic effect with VitC (Fig. 2).

In addition, four pre-clinical studies reported overex-
pression of P53 when VitC was combined with chemo-
therapeutics such as topotecan, oxaliplatin, irinotecan,
cisplatin and 5-FU, as well as with anti-inflammatory
compound sulindac [88, 101, 118, 120]. Notably, over-
expression of P53 gene is known to play a key role
in reducing oxidative stress levels by, for instance,
mediating enzyme activity of known ROS scavengers
glutathione peroxidase (GPX) and aldehyde dehydroge-
nase (ALDH) [233]. These findings suggest P53 may be
involved in VitC-mediated cytotoxicity.

Interestingly, in a study in thyroid cancer, ROS-
dependent inhibition of MAPK/ERK and PI3K/AKT
pathways has been shown to mediate cancer cytotox-
icity in vivo [49]. The synergy between kinase inhibi-
tors and high-dose VitC can be partly explained by
increased redox imbalance, considering recent data
showing that kinase inhibitors induce synergistic toxic-
ity with low-dose H,O, in colorectal cancer cells [234].

Similarly, a remarkable kinase modulator effect
was observed in several studies, mostly by reducing
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phosphorylation levels of ERK, BRAF and AKT [64, 99,
109, 122, 123] (Figs. 2 and 4). This effect might position
VitC as a promising alternative to kinase inhibitors in
the treatment of cancer.

In addition, the effect of glycolysis inhibitors may also be
enhanced by high-dose VitC in a ROS-dependent manner,
since both inhibitors increase oxidative stress levels [235].
The efficacy of combining VitC with immunosuppressor
auranofin can also be partly ascribed to redox imbalance
targeting, since auranofin was shown to induce intracellu-
lar accumulation of H,O, generated by VitC [236]. Clearly,
redox imbalance is a major target involved in the specific
anti-cancer activity induced by high-dose VitC.

Co-factor activity

As mentioned previously, VitC acts as a reducing agent of
iron, crucial for Fe-containing protein function. These iron
sequestering enzymes are involved in numerous metabolic
processes such as the mitochondrial respiratory chain (i.e.
cytochrome C, NADH-ubiquinone reductase or complex I),
synthesis of collagen (prolyl oxygenase) and oxidative stress
regulation (i.e. catalase, peroxidases) [237].

Along with its pro-oxidant function, VitC-mediated
cytotoxicity toward cancer cells has also been explained
by the 1. regulation of collagen synthesis, 2. hypoxia
inducible factor (HIF) proteasomal degradation and 3.
TET activity regulation.

Collagen synthesis, EMT and invasion

Regulation of collagen synthesis is key for hamper-
ing cancer progression. The concept of counteracting
decreased collagen synthesis and thereby targeting a
potential metastatic vulnerability in cancer by using VitC
was first proposed by William McCormick over 60years
ago [238, 239], and subsequently extended by Ewan Cam-
eron [240]. One of the major components of the extra-
cellular matrix are collagen fibrils, which are formed
by strong collagen tertiary structures. VitC is known to
stabilize these strong cross-links, preventing neoplastic
invasion [241, 242]. As mentioned in previous sections,
recent pre-clinical studies [14, 33, 39, 43, 58—61] and case
report studies [67-72, 243, 244] have shown a signifi-
cant decrease or depletion of metastasis, and complete
tumour regression of advanced or metastatic disease,
respectively. Interestingly, Polireddy et al. [14] showed
that metastatic reduction in pancreatic cancer was cor-
related with increased stromal collagen levels in vivo. In
their phase I/1Ia study, they also found increased collagen
levels in a patient who became suitable for tumour resec-
tion after 70 doses of IVC (100 g/infusion) and 9 cycles of
gemcitabine, compared to untreated, FOLFIRINOX or
gemcitabine-treated patients [14].
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Another described mechanism by which VitC tar-
gets cancer invasion is the reversion of epithelial-to-
mesenchymal transition [60, 245]. Zhao et al. [245]
reported VitC to inhibit the proliferation, migration
and epithelial-mesenchymal-transition of lens epi-
thelial cells through deactivating hypoxia inducible
factor. Moreover, Zeng et al. [60] showed a reduc-
tion of vimentin and an increase of E-cadherin levels
upon high-dose VitC, thereby suppressing EMT and
inhibiting cell migration and invasion in breast cancer
in vitro and in vivo.

In light of collagen synthesis activation, EMT rever-
sion and invasiveness inhibition, high dose VitC could be
an effective solution for the prevention and treatment of
advanced disease.

Oxygen-sensing

Many solid tumours become hypoxic when their growth
outruns the emergence of new blood vessels around it.
To ensure their survival, tumour cells in turn activate the
transcription factor HIF-1 [246, 247].

VitC regulates location and function of HIF hydroxy-
lases, which deactivate HIF-1 by ultimately targeting
it to proteasomal degradation and thereby suppress-
ing tumour growth [1, 2, 248-250]. In particular, Fis-
cher and Miles [248] showed that VitC was able to
decrease the malignant potential of melanoma by ham-
pering HIF-1a activity, and Kawada et al. [155] showed
a downregulation of HIF-1 upon high-dose VitC in
human leukemic cells in vitro and in vivo. J6Zwiak et al.
[249] also found a negative correlation between HIF-1a
mRNA expression and VitC levels in human thyroid
neoplastic lesions, suggesting that VitC may also inter-
fere with HIF-1 transcriptional activity. Additional
pre-clinical [251, 252] and clinical [253, 254] work by
Kuiper and colleagues confirmed this inverse relation-
ship between HIF-1 activity and tumor ascorbate lev-
els. For instance, in their human colorectal cancer
study [253], higher levels of tumour VitC were inversely
correlated with HIF-1 pathway activation and with a
significantly improved disease-free survival. Besides
this HIF regulatory function, hypoxia is a common
phenomenon in tumour cells and not in normal cells,
which increases cancer cell susceptibility to VitC [255].

Given the important role of hypoxia in cancer survival
and its well-known implications for treatment resistance,
VitC-mediated regulation of HIF activity may provide
another facet that is key for improving the treatment of
solid tumours.

Epigenome regulation
Cancer cells are well known to have aberrant DNA
methylation patterns important for survival and tumour



Bottger et al. J Exp Clin Cancer Res (2021) 40:343

progression [256, 257]. Particularly, active DNA demeth-
ylation is carried out by the TET enzymes, which are fre-
quently mutated in haematological malignancies. These
enzymes are ketoglutarate-, iron- and oxygen-depend-
ent, and belong to the same family as HIF hydroxylases
and prolyl hydroxylases crucial for collagen-synthesis as
described above.

In the treatment of cancer, high-dose VitC has been
shown to induce DNA demethylation by restoring and
regulating TET aberrant levels [3]. This anti-cancer VitC
role, previously unknown, was widely investigated a
couple of years ago in the context of cancer stem cells
in leukaemia progression [20, 22]. Sequentially, Vit-C-
mediated restoration of TET, also when mutated, enables
the re-expression of tumour-suppressor genes in cancer
cells [2, 3, 105, 174]. A notable recent study in acute
myeloid leukaemia (AML) reported that high-dose VitC
activated TET enzymes synergistically with inhibition of
mutant isocitrate dehydrogenase 1 (IDH1), resulting in
diminished cell growth and increased myeloid differen-
tiation [24].

Vit-C-mediated restoration of TET was also described
in four pre-clinical studies combining high dose VitC
with chemotherapy [98], targeted therapy [22, 119] and
ICI anti-PD-1 [90] (Figs. 4 and 6). Cimmino et al. [22]
showed that upon TET2 induced demethylation, high-
dose VitC was able to sensitize leukaemia cells to PARP
inhibition, mainly due to increased DNA damage.

In addition to TET enzymes, VitC enhances the activ-
ity of Jumonji C (JmjC) domain-containing histone
demethylases (JHDM) and thereby hinders the aberrant
self-renewal of hematopoietic stem cells [3]. Interestingly,
these Jumonji histone demethylases are also responsible
for epigenetic landscape regulation and for activating cel-
lular responses upon changes in energy metabolism, oxy-
gen and iron levels [219]. In light of the above, VitC can
considerably stimulate demethylation in several ways,
leading to the re-expression of tumour suppressor genes,
and thereby greatly interfering with tumour survival as
well as sensitizing to other therapeutic agents.

Immune modulatory effects

VitC is maintained at high levels in most immune cells
and can affect many aspects of the immune response
[258]. The contribution of ascorbate as an antioxidant in
immune cells is well-established while its cofactor activ-
ity for Fe- or Cu-containing oxygenases is emerging as
a key factor in the functional effects on both the innate
and adaptive immune responses [5, 219]. This activity
requires mM concentrations of VitC, thereby empha-
sizing the need for a high intake to enable adequate
immune function, especially in conditions of inflam-
mation and cancer when VitC often becomes deficient.
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VitC-dependent processes in immune cells include mye-
loid and T cell differentiation and polarisation, T cell
maturation and activation, B cell development, chemo-
taxis, cytokine production and enhanced NK cell medi-
ated cancer killing [5]. Interestingly, and linked to the
previous section, VitC seems to also regulate the epige-
netic profile of immune cells such as by TET activity res-
toration in iTreg cells, which leads to Foxp3 re-expression
and drives proper immune cell function [259].

Furthermore, two very recent pre-clinical studies
showed that high-dose VitC synergizes with immune
checkpoint inhibitors anti-PD-1 and anti-CTL-4 [90, 91]
(Figs. 4 and 6). Importantly, Magri et al. [91] observed
the largest anti-cancer effect only when administer-
ing high-dose VitC to immunocompetent mice and not
to immunocompromised mice [91]. This indicates that
its anti-tumour activity is not solely dependent on its
pro-oxidant effects, but also substantially on some of its
immunomodulatory functions.

Global molecular profiling studies on high-dose
IVCin the cancer context

To gain further insights in VitC’s anti-cancer properties
on the molecular level, system-wide approaches that cap-
ture the complex interplay of various cellular signalling
pathways are warranted. Specifically, transcriptomic and
especially proteomic studies have the power to capture
phenotypic manifestations of genetic alterations. To date,
global RNA and protein expression studies on high-dose
VitC action are confined to a few cell line studies in spe-
cific cancer types. Here, we summarize these studies and
their most important findings, considering both studies
specifically looking at the global effects of VitC treatment
on its own (i.e. without confounding co-treatments), as
well as the effects of combining VitC with other (chemo-)
therapies (Fig. 5, Table 4).

Proteomic studies

A number of proteomics studies have been performed
to study VitC effects in cancer cell lines employing 2D
gel-based analysis and more comprehensive mass spec-
trometry-based proteomics (Table 4). Here we discuss
the latter studies based on nano-liquid-chromatography
coupled to mass spectrometry. Very recently, a large-
scale proteomic analysis (SILAC-based mass spectrom-
etry) was performed in KRAS/BRAF wild-type CRC
cells (DiFi) treated with either VitC (1 mM) or anti-EGFR
agent cetuximab, or a combination of both [159]. Both
short (4h) and long-term (24h) exposure was analyzed.
Among the most striking observations was a downregu-
lation of glycolysis in cetuximab and combo-treated
cells at early time-points, while proteins related to iron
metabolism, such as ferritin and transferrin receptor
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TERC, were respectively up and downregulated in VitC
and combo-treated cells at later time-points. Based on
these results as well as additional metabolic profiling
experiments, the authors proposed a model whereby
the cetuximab-induced switch from glycolysis to oxida-
tive phosphorylation makes cancer cells more suscepti-
ble to the oxidative stress induced by VitC. Subsequent
mobilization of iron pools and induction of ROS-medi-
ated stress by VitC could ultimately lead to membrane
lipid damage and cell death. A breast cancer study in
MDA-MB-231 cells used a biotin switch approach to
enrich proteins containing oxidized thiols, followed by
LC-MS/MS, to identify very early (30min) alterations
of the redoxome in cellular response to 10mM ascor-
bic acid [160]. Besides antioxidant enzymes (such as
PRDX1) and glycolysis- and TCA cycle-related proteins
(eg. PGK1) showing a significant increase in oxidation
upon ascorbic acid treatment, analysis of this redoxome
dataset additionally suggested that translation inhibition
may be one of the possible mechanisms responsible for
oxidative stress-based ascorbic acid cytotoxicity. Using

a label-free proteomic approach, another breast cancer
study analysed the long-term (24 h) effect of 2mM VitC
on the proteome of MCEF-7 cells [161]. Besides proteins
directly related to apoptosis, proteins involved in protein
processing in the ER were upregulated upon VitC treat-
ment. Specifically, elF2a and PKR/PKR pThr-446 were
suggested to be responsible for the unfolded protein
response and inhibition of cell translation during endo-
plasmic reticulum stress, which may be a direct result of
increased oxidative stress. A study focusing on the con-
jugation machinery for SUMOylation in response to low
dose (100 uM) ascorbate performed SUMO-1 IP followed
by ESI-FT ICR MS in neuroblastoma cell line SH-SY5Y
[162]. This study identified, among others, DTD2 and
MGATS5B, two proteins without predicted SUMOylation
site, related to translation and glycosylation, respectively,
with increased abundance following ascorbate (but not
hydrogen peroxide) treatment.

Concerning the effect of combining VitC with other
(chemo-) therapies, an LC-MS/MS study in breast can-
cer cell line MCF7 cell line [167] showed that combining
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topoisomerase II inhibitor doxorubicin with medium
dose (200uM) VitC lead to a down-regulation of ribo-
somal, transcriptional and translational, as well and
anti-oxidant (eg. SOD1) proteins. Decreased expres-
sion of proteins regulating cell cycle and translation was
also found when treating HL-60 leukemia cell line with
a combination of low dose (100puM) VitC, ATO and
tocopherol (vitamin E) [96]. A SILAC-based mass spec-
trometry study examined proteomic changes in 2 cell
lines (A549 and MDA-MB-231) with different sensitivi-
ties to anti-inflammatory redox-modulating molecule
auranofin (AUF) in combination with pharmacological
doses (2.5mM) of VitC [97]. Most notably, high expres-
sion levels of metabolic proteins with oxidoreductase
activity such as TXNRD1, ALDH3A2 and PTGR1 were
linked to cellular resistance to AUF/VitC combinations,
in line with increased antioxidant mechanisms counter-
acting the anti-cancer activities of high-dose VitC.

Transcriptomic studies

Most studies investigating changes in the transcriptome
following VitC treatment used doses of less than 1 mM.
Three Studies by the same group analysed the effect of
0.1mM VitC on breast and melanoma cell lines using
RNA-sequencing [36, 168, 169]. These analyses revealed,
among others, deregulation of apoptotic gene clusterin
as well as genes involved in extracellular matrix remod-
eling in melanoma cell line A2058, as well as increased
TNF-related apoptosis-inducing ligand (TRAIL) tran-
scripts in breast cancer cell line MDA-MB-231. Latter
study also identified genes related to iron metabolism
(TFRC) and glycolysis (PGK1), in line with VitC-induced
changes on the protein level observed in the proteomic
studies referred to before [159, 160]. Ge and colleagues
[170] investigated the effects of long term (10 passages),
low-dose (0.1 mM) VitC exposure on renal cell line 786-
O, and found that while metabolic processes such as
glutathione and pentose-phosphate metabolism were
positively enriched, genes related to DNA replication and
mismatch repair showed negative enrichment. A similar
strong de-regulation of DNA replication-related genes
was seen by the same group when treating bladder cancer
cell line T24 with medium doses (0.25 mM) of VitC [171].
One notable study focused on the effects of high-dose
ascorbate on the transcriptome of Huh-7 cell line xeno-
graft tumour hepatocellular mouse models, as assayed
by microarray analysis [172]. Changes in the transcript
levels of genes involved in insulin receptor signalling,
metabolism and mitochondrial respiration were iden-
tified, among which was the upregulation of advanced
glycosylation end product-specific receptor (AGER). Pos-
sibly related to this are microarray-derived findings on
acquired resistance in Lymphoma cell lines by the same
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group [173]. Here, ascorbate resistant JLPR cells (that
were generated by incubation of sensitive JLPS cells with
increasing ascorbate concentrations from 0.1 to 1mM
over 6 months) were characterized not only by increased
levels of genes such as ferritin, topoisomerase II and glu-
tathione peroxidase 4, but also by the decreased expres-
sion of high-mobility group protein box 1 (HMGB1),
one of the ligands of AGER. In general, as expected and
as seen in several of the proteomic studies, VitC-induced
abundancy changes in apoptotic genes are also reported
in many of the transcriptomic studies [36, 169, 173-175].

Taken together, both the proteomic and transcriptomic
studies identified many known facets of VitC action in
cancer cell killing, including apoptotic, redox and meta-
bolic mechanisms, but also revealed less defined roles
of ascorbic acid, such as the regulation of cytoskeleton
remodeling and the inhibition of translation (proteomics)
as well as DNA replication and repair (transcriptomics).
The key processes found to be altered in high-dose VitC
studies specifically include alteration of iron homeosta-
sis, disruption of glycolysis and inhibition of translation
(Fig. 6). In addition, critical proteins involved in these
pathways were identified, which may give leads for future
(co-) targeting strategies.

Metabolomic studies

Finally, four studies sought out to globally profile meta-
bolic changes induced by high-dose VitC administra-
tion in breast, colorectal and hepatocellular cancer cell
line models [32, 176-178]. Although length of treatment
and experimental model differed per study, all observed
a drop in ATP levels and a depletion of NAD following
exposure to high-dose VitC, in line with the inhibition
of energy metabolism and multifaceted metabolic rewir-
ing described in numerous pre-clinical studies using
alternative approaches. In general, glycolytic metabo-
lites upstream of GAPDH were enriched upon high dose
VitC treatment, while those downstream were depleted,
in line with an inhibition of GAPDH by VitC, ultimately
leading to the disruption of glycolysis and TCA cycle also
observed in several proteomics studies (Table 4, Fig. 6).

Conclusions and outlook

In their 1979 review “Ascorbic Acid and Cancer: A
Review” [242], Linus Pauling and colleagues expressed
their hopes that “properly designed controlled trials”
would soon be conducted to “confirm or refute” their
clinical findings, and that if confirmed, “ascorbate will
soon become an essential part of all practical cancer
treatment and cancer prevention regimens” Although
this vision has not become reality yet, the growing num-
ber of well-designed, high impact pre-clinical and early
stage clinical studies are contributing to moving the field
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HIGH DOSE VITC MULTIFACETED CANCER TARGETING
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Fig. 6 Overview of high-dose VitC multifaceted cancer effects investigated in pre-clinical and omic studies. Schematic representation of the four
most known high-dose VitC modulatory effects in cancer cells and the recently concomitant emerging mechanisms

of high-dose VitC in the cancer care context forward. Based on molecular characterization of tumor cells, it
In addition, with the rise of global profiling strategies is becoming increasingly evident that patient subgroups
such as metabolomics, transcriptomics and large-scale  harbouring certain genetic mutations or overexpress-
proteomics leading to further delineation of the mecha-  ing certain proteins may be particularly susceptible to
nisms of action of vitamin C, future clinical trials may be  benefiting from VitC mono- and combination thera-
designed based on more refined rationales. pies. This holds true for tumors baring KRAS mutations
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for instance, which are generally difficult to treat, being
resistant to targeted anti-EGFR therapy amongst others.
In this respect, a further boost for the implementation of
high-dose VitC in cancer care is expected to arise from
an initiative of the Stand Up to Cancer (SU2C) - Ameri-
can Association for Cancer Research charity program,
which is raising money for translational cancer research
via broad media awareness campaigns. One of the col-
laborative projects set up as a result of SU2C funding is
the “SU2C Colorectal Cancer Dream Team: Targeting
Genomic, Metabolic and Immunological Vulnerabilities
of Colorectal Cancer’”, which has since opened a clinical
trial testing the safety and efficacy of high-dose IV VitC
as a treatment for KRAS mutant cancers [73]. Impor-
tantly, genome sequencing and RNA expression profiling
of the tumors collected in this phase II study are planned,
in an attempt to further translate pre-clinical mechanistic
insights on VitC action to the clinical setting. It has been
shown that VitC selectively kills KRAS and BRAF mutant
colorectal cancer cells by targeting GAPDH [32], which
may also explain why VitC shows to be especially promis-
ing in the treatment of pancreatic cancer, where over 90%
of the cases harbour KRAS mutations [260] and MM,
where RAS family genes also show the most frequent
mutations [113]. In addition, tumors baring a TET2 or
IDH-1 mutation may be especially sensitive to VitC treat-
ment, and this is also true for cancer types having high
concentrations of labile iron, due to low expression of
Ferroportin 1 (Fpnl) for instance. Importantly, IDH-1/2
mutations pose an important anti-cancer strategy for
hard-to-treat cancer types, these mutations occurring
in ~70-80% of lower-grade gliomas and the majority of
secondary glioblastomas and in up to 20% of patients
with AML [261, 262]. Concerning TET2, mutations in
this gene are observed in different myeloid malignan-
cies and are related to AML prognosis [263]. In addition,
high-dose VitC also has more effect on mismatch repair
(MMR)-deficient tumors than on MMR-competent ones,
suggesting that the antitumor effect of VitC is enhanced
in tumors harbouring increased mutational/neoantigen
burdens [91]. Furthermore, sulindac and VitC could be a
novel anti-cancer therapeutic strategy for p53 wild-type
colon cancers, as this causes apoptosis in a p53-depend-
ent manner [118]. Finally, using high-dose VitC in
immune checkpoint therapy may benefit a wide variety of
cancer patients, especially those having low PD-1/PDL-1
expression [90].

An absolute necessity in the quest to make high-dose
VitC more broadly available to cancer patients is the
conduction of randomized phase III clinical trials on
large patient groups (typically over 300), with the aim of
assessing the effectiveness of VitC (combinations) com-
pared to the current ‘gold standard’ treatment for a given
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cancer type. Due to their expensive and time-consuming
nature, no such trials have been completed for VitC to
date. Nevertheless, based on the promising pre-clinical
and early-phase clinical trial findings in the colorectal
cancer setting [12, 13, 32, 151], a Chinese phase III trial
aiming to evaluate the effectiveness of combing high dose
IV VitC (1.5g/kg) with FOLOX +/— bevacizumab ver-
sus treatment with FOLFOX +/— bevacizumab alone as
first-line therapy in patients with recurrent or advanced
colorectal cancer is currently ongoing (ClinicalTrials.
gov Identifier: NCT02969681, Table 3, recruiting status
unclear). Related to this, another Chinese phase III trial
is currently assessing this combination specifically in
peritoneal metastatic colorectal cancer patients with high
expression of GLUT3 [131] (Table 3).

From a practical point of view, experiences from clini-
cal trials and case reports have made it evident that while
adverse events are rare, a few aspects should be consid-
ered before administering high doses of IVC. While some
side effects, such as a decrease in the levels of potassium
(hypokalemia) by VitC may be mitigated by supplementing
the formula, certain conditions have to be closely moni-
tored and may be contraindicative for IVC treatment. For
example, in patients with renal insufficiency, high dose
IVC may lead to kidney stone formation or acute oxalate
nephropathy [65, 264], while a red cell glucose-6-phos-
phate dehydrogenase deficiency (G6PD) has been linked
to cases of hemolytic anemia [66, 265] following high dose
IVC, sugesting both of these condition should be screened
for prior to high dose IVC administration.

Concerning the optimal IVC administration regi-
men, evidence outlined in this review suggests that 1)
anti-cancer effects can only be achieved when VitC is
administered intravenously, 2) the dose of IVC has to be
sufficiently high in order to generate millimolar concen-
trations of VitC in the plasma [12, 13]. The recommended
effective doses range from 1.5g/kg [12, 151] to 1.9-2.2g/
kg [13] in the IVC monotherapy studies, while IVC com-
bination therapies indicated 75g [110, 155] to 87.5g [16,
129] whole body dose to be sufficient. Furthermore, 3)
these doses of IVC should be administered at least twice
a week. Almost all clinical trials that present sugges-
tions of efficacy and other favourable clinical outcomes,
administered IVC 2-3 times a week, for at least 8 weeks
[63, 82, 153, 156, 157].

To conclude, a large body of evidence is accumulating
suggesting that VitC, when administered intravenously
and in high doses, has potent cancer-selective cyto-
toxic, cancer-therapy sensitizing and toxicity-reducing
properties.

High-dose VitC therefore has the potential to expand
the therapeutic range of radio-, chemo- and tar-
geted therapies as well as their efficacy. In addition, a
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wide variety of cancer patients may benefit from the
expanded therapeutic scope of immune checkpoint
inhibitors by high-dose VitC. Despite this fact, low
accrual remains to hamper further clinical examina-
tion, most often because the drug combination in ques-
tion is no longer standard of care while the study is
ongoing. Importantly, this is the case even though the
assessment of these combinations may still be highly
clinically relevant. Fortunately, future clinical studies
combining high-dose VitC with immunotherapy may
not face this problem, considering the current high
interest in this treatment modality and the need to
overcome its current limitations.

Considering how the implementation of high-dose
VitC may be a breakthrough in the treatment of cancer
patients with poor prognosis and few available treat-
ment options, it is fair to conclude that further clini-
cal examination of this promising and non-toxic cancer
treatment modality is not only warranted, but is in fact
highly needed.
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